Efficient Feature Learning Using Perturb-and-MAP
نویسندگان
چکیده
Perturb-and-MAP [1] is a technique for efficiently drawing approximate samples from discrete probabilistic graphical models. These samples are useful for both characterizing the uncertainty in the model, as well as learning its parameters. In this work, we show that this same technique is effective at learning features from images using graphical models with complex dependencies between variables. In particular, we apply this technique in order to learn the parameters of a latentvariable model, the restricted Boltzmann machine, with additional higher-order potentials. We also use it in a bipartite matching model to learn features that are specifically tailored to tracking image patches in video sequences. Our final contribution is the proposal of a novel method for generating perturbations.
منابع مشابه
Exploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images
Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملTraining Restricted Boltzmann Machine by Perturbation
A new approach to maximum likelihood learning of discrete graphical models and RBM in particular is introduced. Our method, Perturb and Descend (PD) is inspired by two ideas (I) perturb and MAP method for sampling (II) learning by Contrastive Divergence minimization. In contrast to perturb and MAP, PD leverages training data to learn the models that do not allow efficient MAP estimation. During...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013